Fire Detection

Computer Vision & Idt - "
Pattern Recognition Lab DQ'BI”[H —‘J:l
Kumah National Institute of Technology

Procedure

Algorithm 1 Processing Pipeline for Fire Detection

1:

10:
11:
12:

13:
14:
15:
16:
17:

Input:
video_pth (path to video)
output_pth (path to video output)
PATCH_WIDTH, PATCH_HEIGHT, STRIDE_X, STRIDE.Y (patch pa:rametcrs)
model, THRESHOLD, device, inference_transform (for fire detection)
Output: Video saved at output_pth with overlaid fire masks
frames <~ GENFRAMES(video_pth)
masks < empty list
for all each image img in frames do
(patches, patch_coords) < GEN_PATCHES(img, PATCH_WIDTH,
PATCH_HEIGHT, STRIDE_X, STRIDE_Y)
for all each index ¢ and patch in patches do
Convert patch from RGB to BGR
patch + GMM_FIRE_DETECTION(img = patch, model_path =
" gmm/fire_gmm _lab.pkl”, threshold = 1 x 10~%)
(patchesli], _) «— CENTER_FIRE_PATCH(patch, patch)
end for
mask < PROCESS_PATCHES(patches, model, THRESHOLD, device, in-
ference_transform)
Convert mask from BGR to RGB
overlay < ¢V2.ADDWEIGHTED(img, 0.5, mask, 0.7, 0)
Append overlay to masks
end for
SAVE_VIDEO(masks, output_pth, fps = 24, codec = 'mp4v’)

Procedure

Algorithm 2 gen_patches

1:

oWy

© ® N> T

11:

12:
13:
14:
15:
16:
17:

function GEN _PATCHES(img, PATCH WIDTH, PATCH HEIGHT,

STRIDE X, STRIDE_Y)

(img_h,img_w) < dimensions of img

patches < empty list

patch_coords < empty list

for top_y < 0 to img_-h — PATCH_HEIGHT step STRIDE_Y do

for left x « 0 to img_w — PATCH_WIDTH step STRIDE_X do

patch_ymin « top_y
patch_xmin < left x
patch_ymax « top_y + PATCH HEIGHT
patch_ xmax + left x + PATCH_WIDTH

patch — copy of img/[patch_yman:patch_ymaz,

patch_rmin:patch_rmaz/
Append patch to patches
Append (patch_ymin, patch_tmin) to patch_coords
end for
end for
return patches, patch_coords
end function

Procedure

Algorithm 3 gmm_fire_detection

1: function GMM_FIRE_DETECTION img_patch, model_path, threshold)

17:

Open file model_patch in read-binary mode as f
gmm < PICKLE.LOAD(f)
Close file f
lab - cv2.cvTCOLOR(img_patch, cv2.COLOR_BGR2Lab)
(h.w) < dimensions of lab
lab_flat < reshape(lab, (—1,3)) and convert to float64
log_likelihood ¢+ ¢MM.SCORE_SAMPLES(lab_flat)
likelihood ¢+ exp(log_likelihood)
fire_mask_flat + zero array of length (h x w), type uint8
for each index ¢ from 0 to length(lab_flat)-1 do

if likelihood[i] > threshold then

fire_mask flat[i] « 255

end if
end for
fire_mask < reshape(fire_mask flat, (h,w))
return fire_mask

18: end function

Image patch

fire_mask

image_patch

Procedure

Algorithm 4 Center-Fire-Patch

1: function CENTER_FIRE_PATCH(image_patch, fire mask)
2 (H, W) « dimensions ot image_patch
3 indices +— positions in fire_mask where value > 0
4: if indices is empty then
5: (cy,cx) « (H /)2, W]/ 2)
6: else
7 (cy, cx) « mean value of indices (average row and column)
8 end if
9: center y < H/2
10: center_r + W/2
11: dx + cx — center_z > positive if fire is to the right
12 dy + cy — center_y > positive if fire is below
13: it dz < 0N dy = 0 then
14: base_image «+ flip image horizontally
15: else if dz > 0 A dy < 0 then
16: base_image < fip image vertically
17: else if dx < 0 A dy < 0 then
18: base_image + flip image horizontally then vertically
19: else
20: base_image < copy of image
21: end if
22; p4d « base_image

23: p3 « flip p4 horizontally

24: p2 « flip p4 vertically

25: pl + flip p3 vertically

26: pl + flip pl vertically then horizontally

27: p2 + flip p2 vertically then horizontally

28: p3 < flip p3 vertically then horizontally

29: pd < flip p4 vertically then horizontally

30: top_row < concatenate horizontally (pl, p2)

31 bottom_row < concatenate horizontally (p3, p4)
32: centered_patch + concatenate vertically (top_row, bottom_row)
33: return centered_patch

34: end function

Procedure

Algorithm 5 process_patches
1: function PROCESS_PATCHES(patches, model, thres, transform, device)
2 (img_h,img_w) < dimensions of img
3 mask < black image of size (img_h,img_w,3)
4 patch_masks < empty list
5: MODEL.EVAL > Set model to evaluation mode
6
7
3

for all each patch (patch_img) in patches do
if transform is provided then
: patch_tensor «— TRANSFORM/(patch_img)
9: end if

10: logits < MODEL(patch_tensor) > fire classification model
11: probs < softmax(logits)
12: fire_prob < fire probability from probs
13: if fire_prob > thres then
14: normalized_conf < 0.5 x (fire prob = thres)
(1.0 — thres)
15: normalized _conf «— clamp(normalized _conf, 0.0, 1.0)
16: intensity_value < |255 X normalized_conf |
17: patch mask <+ (0, 0, intensity value)
18: Append patch_mask to patch_masks
19: end if
20: end for
21: return patch_masks

22: end function

Model Training

For each image make patches
if fire area > threshold

add to fire_patches list

else

add to non-fire_patches list

Randomly pick and save 10 fire patches and 10 non-fire images

Train classification model on fire and non-fire patches

Results

BE-ap™ ----EIHH'II

With centering fire patches

Without centering fire patches

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

