

# FIRE REPORT

Bishal

# OVERALL PROJECT STRUCTURE

```
Fire-Classification/
|__ configs/          # Hydra configs
|  |__ augment.yaml
|  |__ test.yaml
|  |__ train.yaml
|__ data/
|  |__ raw_fire_sample/      # raw fire sample images
|  |__ inference/          # sample image for inference
|  |__ fire/                # [generated] fire images
|  |__ non-fire/           # [generated] non-fire images
|  |__ augmented/          # [generated] train/val/test splits
|__ debug/
|__ fireEnv/          # [generated] python environment
|__ inference_outputs/ # [generated] inference ouput subdirs per run
|__ outputs/           # [generated] output subdirs per run
|__ saved_weights/    # Saved model weight
|__ src/
|  |__ data/
|  |  |__ dataloader.py    # Dataloader class used for training
|  |__ models/
|  |  |__ classification_model_scratch.py # custom model
|  |  |__ classification_model_yolo.py     # YOLO model
|  |  |__ classification_model.py         # other pretrained models
|  |__ utils/                  # contains utils files
|  |__ augment.py/            # data augmentation script
|  |__ train.py/              # training script
|  |__ test.py/               # evaluation (metrics, plots, CSV)
|  |__ inference.py          # grid-based fire localization with saved json
```

# DATA PREPROCESSING

1. Collected images from various sources online on fire related images.

MIVIA Fire Detection dataset 

Firenet Dataset 

Fire Flame Dataset 

SKLFS Dataset 

Kaggle Fire Dataset 

Roboflow Fire Datasets 

# DATA PREPROCESSING

## 1. Extracting Fire and non-Fire image patches.



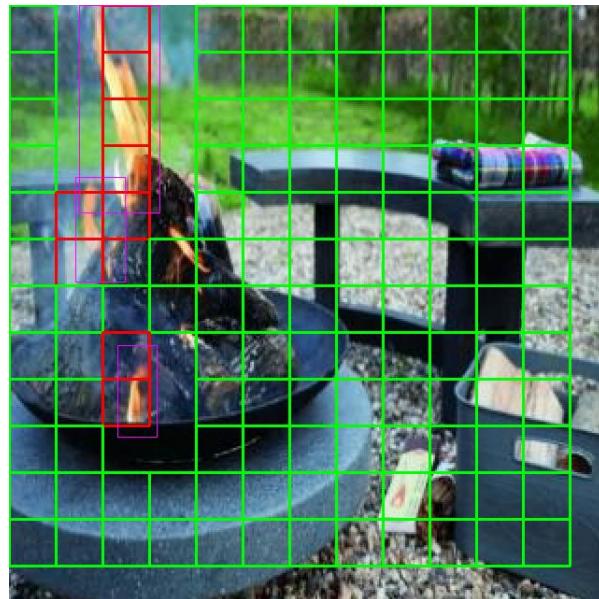
1 0 0.6863333333333334 0.6327916666666666 0.3657499999999996 0.5920000000000001  
2 1 0.4536944444444446 0.5833333333333334 0.1064722222222222 0.5  
3 1 0.4838055555555554 0.1640833333333333 0.837972222222222 0.328125  
4 1 0.9363333333333332 0.6041666666666666 0.1273055555555556 0.5208333333333334



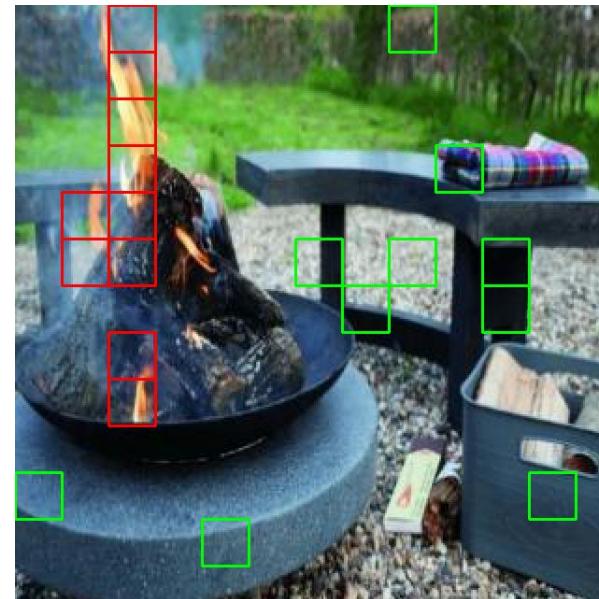
Fire image patches



Non-Fire image patches


Make fire/non-fire image patches based on

# DATA PREPROCESSING


## 1. Extracting Fire and non-Fire image patches.



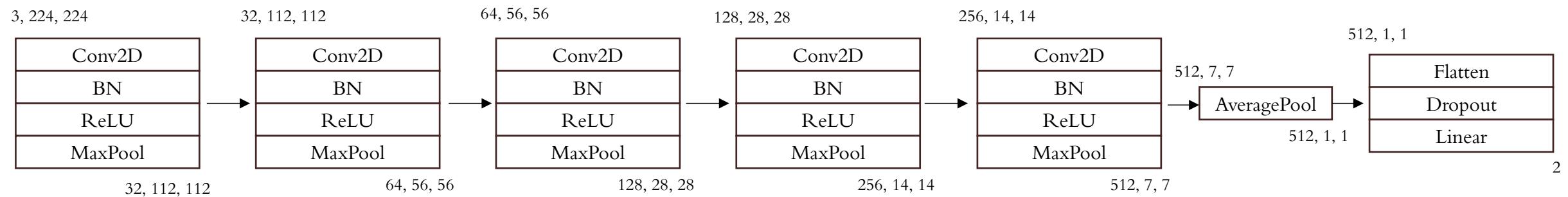
Original fire image with annotated ground-truth labels.



Divide the image into patches and classify each as fire (red) or non-fire (green) based on overlap with ground-truth fire regions.



Randomly select an equal number of non-fire patches to match the fire patches for balanced training data.


# DATA PREPROCESSING

2. Divide into train, test and val. Perform augmentations on the train set.

```
# Albumentations pipelines (order = list order)
pipelines:
  train:
    - name: "HorizontalFlip"
      p: 0.5
    - name: "ShiftScaleRotate"
      shift_limit: 0.05
      scale_limit: 0.10
      rotate_limit: 15
      border_mode: 0
      value: [0, 0, 0]
      p: 0.5
    - name: "RandomBrightnessContrast"
      brightness_limit: 0.2
      contrast_limit: 0.2
      p: 0.5
    - name: "HueSaturationValue"
      hue_shift_limit: 10
      sat_shift_limit: 15
      val_shift_limit: 10
      p: 0.3
    - name: "GaussianBlur"
      blur_limit: 3
      p: 0.2
    - name: "GaussNoise"
      var_limit: [5.0, 20.0]
      p: 0.2
```

# MODEL DETAILS

## Fire Classification Model Structure



```
optim:
  name: "adam"
  lr: 0.0001
  weight_decay: 0.0

scheduler:
  name: "none"

training:
  epochs: 50
  batch_size: 32
  early_stop: true
  patience: 7

other:
  seed: 0
  log_print: true
  wandb: false
```

Other configurable parameters

# FIRE CLASSIFICATION

Model Results in comparison to Resnet50 backbone model

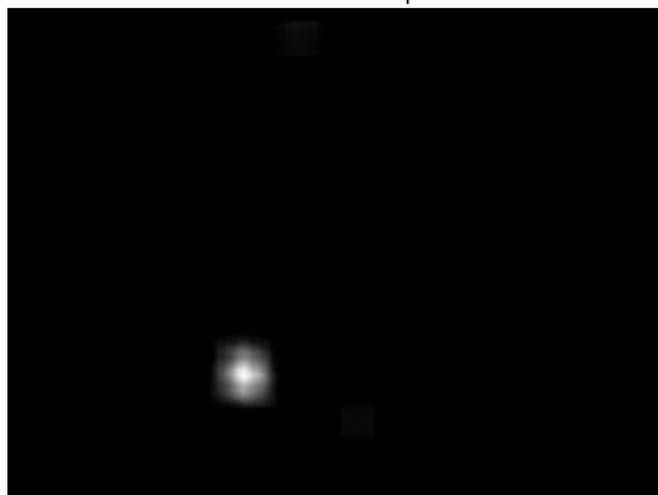
| Models          | Accuracy | Precision | Recall | F1   | Latency<br>(ms/img) | Throughput<br>(img/s) |
|-----------------|----------|-----------|--------|------|---------------------|-----------------------|
| Resnet50*       | 94.5     | 94.3      | 95.6   | 91.5 | 3.684               | 271.5                 |
| Fire Classifier | 89.3     | 88.9      | 86.8   | 87.8 | 0.440               | 2270.8                |

\* Trained as model backbone

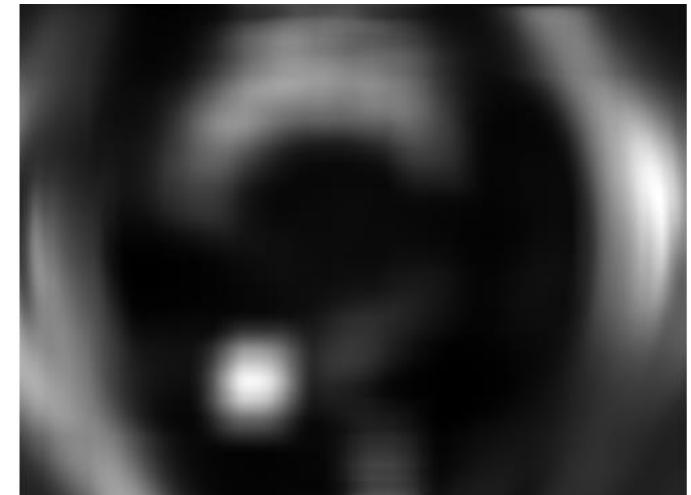


Resnet50 Output




Fire Classifier Output

# FIRE CLASSIFICATION


Model Results in comparison to Resnet50 backbone model



Input image



Resnet50 sliding window  
classification heatmap



Fire classifier sliding window  
classification heatmap

# CODE SETUP AND USAGE

## 1. Create and activate environment

```
python -m venv fireEnv
source fireEnv/bin/activate      # Linux / Mac
fireEnv\Scripts\activate          # Windows
```

## 2. Install dependencies

```
pip install --upgrade pip
pip install -e .
```

This installs the project in **editable mode**, so changes to the source code are immediately reflected without reinstalling.

# CODE SETUP AND USAGE

## 4. Data Preprocessing

Generate augmented train/val/test splits (uses config file from `configs/augment.yaml`):

```
python augment.py
```

refer [preprocessing documentation](#) for more details.

## 5. Training

Train model (uses config file from `configs/train.yaml`):

```
python train.py
```

refer [training documentation](#) for more details.

## 6. Test

Run evaluation on the test set using config file from `configs/test.yaml`:

```
python test.py
```

Outputs:

- `metrics.csv` (accuracy, precision, recall, F1)
- Confusion matrix + classification report plots

refer [test evaluation documentation](#) for more details.

## 7. Inference (Grid-based detection)

Run fire localization on a new image:

```
python inference.py --model custom --model_path  
saved_weights/best_modelc.pth --img_dir data/inference/
```

Outputs:

- Saved to `inference_outputs/<timestamp>/`
- Includes original image, grid overlay, and results in json format.

refer [inference documentation](#) for more details.